Amino acids

College of medicine Second stage

By Hekmat Basim Karkosh

Hb-alhmadi@wiu.edu

Amino Acids

- Proteins are polymers of amino acids.
- A protein's amino acid sequence is know as the protein's primary structure.
- The amino acid sequence (primary structure) determines its three-dimensional structure (conformation).
- In turn, a protein's structure determines the function of that protein.

Protein Structure

- 1. Proteins are amino acid polymers. Amino acids join via peptide bonds.
- 2. The functional groups of amino acids account for the large variety in protein function:
 - Structure.
 - Catalysis (enzymes).
 - Regulation: interaction with other proteins and macromolecules (DNA, RNA, carbohydrates).

https://sites.google.com/site/mrsebiology97/cell-chemistry-objective-1d-1e

Structures and Properties of Amino Acids

Amino acids contain a central tetrahedral carbon atom.

All of the amino acids commonly found in proteins possess this type of structure except for proline and its derivatives.

How to assign the position of carbon in an amino acid?

- a) The numerical number,1,2,3, . . . , or Roman symbol, α β,γ, . . . , can be used to assign the position of carbons in a molecule.
- b) If numeric number is used, it starts out from the carboxylic functional group being assigned as 1.
- c) If Roman symbol is used, the carbon atom that directly covalently linked to the carboxylic acid is assigned as α .

Amino Acids

There are 20 common amino acids.

	Three-letter	One-letter	
Amino acid	abbreviation	abbreviation	Amino acio

Table 2.2 Abbreviations for a	nino acids
-------------------------------	------------

Amino acid	abbreviation	abbreviation	Amino acid	abbreviation	abbreviation
Alanine	Ala	Α	Methionine	Met	м
Arginine	Arg	R	Phenylalanin	e Phe	F
Asparagine	Asn	N	Proline	Pro	Р
Aspartic acid	Asp	D	Serine	Ser	S
Cysteine	Cys	С	Threonine	Thr	т
Glutamine	Gln	Q	Tryptophan	Trp	W
Glutamic acid	l Glu	E	Tyrosine	Tyr	Y
Glycine	Gly	G	Valine	Val	v
Histidine	His	н	Asparagine o	or	
Isoleucine	lle	1	aspartic aci	d Asx	В
Leucine	Leu	L	Glutamine or	•	
Lysine	Lys	К	glutamic ac	id Glx	z

The 20 Common Amino Acids

- You should know names, structures, pKa values, 3-letter and 1letter codes.
- Note these structural features
 - All 20 are α-amino acids.
 - For 19 of the 20, the α -amino group is primary; for proline it is secondary.
 - With the exception of glycine, the α-carbon of each is a stereocenter.
 - L-amino acids predominate in nature.

Proline

Amino Acid Classification

Amino acids are classified according to the physical & chemical properties of the side chains.

Five groups:

- 1) Non-polar aliphatic.
- 2) Aromatic.
- 3) Polar uncharged.
- 4) Positively charged (basic).
- 5) Negatively charged (acidic).

Nonpolar, aliphatic R groups

Cyclic structure of proline

- Pro has an aliphatic side chain bonded to both the α -carbon and α -amino group.
- Rigid ring structure.
- Is an "imino acid" containing secondary amine group.

- Phe, Tyr- hydrocarbon aromatic ring.
- Trp- Indole ring side chain, aromatic.

Polar, uncharged R groups

Asparagine

CO0⁻

amide bonds in

side chain

Glutamine

Reactions of Amino Acid Side Chains

Cysteine residues react with each other to form disulfides. This reaction is an oxidation-reduction reaction.

- •Side chains are positively charged at pH 7.
- •Arg-side chain is a guanidino group.
- •His-side chain is an imidazole group.
- •Lys-side chain NH₃ group is attached to an aliphatic hydrocarbon chain.

Histidine ionization

His can bind and release protons near physiological pH.

- Carboxyl group in side chain.
- Can lose a proton, forming a carboxylate ion.
- These amino acids are negatively charged at neutral pH.

Acidic Side Chains

- Acidic Side Chains: Glu (E), Asp (D)
- Both have a carboxyl group in side chain
- Can lose a proton, forming a carboxylate ion
- These amino acids are negatively charged at neutral pH

Three-letter and one letter codes - shorthand representation of the common amino acids

Table 2.2 Abbreviations for amino acids

Amino acid	Three-letter abbreviation	One-letter abbreviation	Amino acid	Three-letter abbreviation	One-letter abbreviation
Alanine	Ala	Α	Methionine	Met	м
Arginine	Arg	R	Phenylalanin	e Phe	F
Asparagine	Asn	Ν	Proline	Pro	Р
Aspartic acid	Asp	D	Serine	Ser	S
Cysteine	Cys	С	Threonine	Thr	т
Glutamine	Gln	Q	Tryptophan	Trp	W
Glutamic acid	Glu	E	Tyrosine	Tyr	Y
Glycine	Gly	G	Valine	Val	V
Histidine	His	н	Asparagine o	or	
Isoleucine	lle		aspartic acid	d Asx	В
Leucine	Leu	L	Glutamine or	•	
Lysine	Lys	К	glutamic aci	id Glx	Z

Several Amino Acids are Rare in Proteins

Modified amino acids:

- Selenocysteine in many organisms.
- **Pyrrolysine** in several archaeal species.
- Hydroxylysine, hydroxyproline collagen.
- Carboxyglutamate blood-clotting proteins.
- **Pyroglutamate** in bacteriorhodopsin.
- GABA, epinephrine, histamine, serotonin act as neurotransmitters and hormones.
- Phosphorylated amino acids a signaling device.

Several Amino Acids are Rare in Proteins

selenoproteins.

Pyrrolysine

(abbreviated as Pyl or O) is considered to be the 22nd proteinogenic amino acid, used by some methanogenic archaea.

Several Amino Acids are Rare in Proteins

(b)

Hydroxylysine and hydroxyproline are found in connective-tissue proteins.

Carboxy-glutamate is found in blood-clotting proteins. Pyroglutamate is found in bacteriorhodopsin.

Biochemistry by Garret and Grisham, 5th ed.

Several amino acid derivatives act as neurotransmitters and hormones.

Acid-Base Properties of Amino Acids

- Amino acids are weak polyprotic acids.
- The degree of dissociation depends on the pH of the medium.
- All the amino acids contain at least two dissociable hydrogens.
 - -COOH
 - $--NH_{3}^{+}$

Acid-Base Properties of Amino Acids

The ionic forms of the amino acids, shown without consideration of any ionizations on the side chain.

How to memorize the amino acids?

<u>Video</u>

pK_a Values of the Amino Acids

You should know these numbers and know what they mean.

- Alpha carboxyl group: $pK_a = 2$.
- Alpha amino group: $pK_a = 9$.
- These numbers are approximate, but entirely suitable for our purposes.

Ionization State of Amino Acids as a Function of pH

Acid-Base Properties of Amino Acids

TABLE 4.1	pKa Values of Common Amino Aci	ds	
Amino Acid	α -COOH p K_a	α -NH ₃ + pK _a	R group pK _a
Alanine	2.4	9.7	
Arginine	2.2	9.0	12.5
Asparagine	2.0	8.8	
Aspartic acid	2.1	9.8	3.9
Cysteine	1.7	10.8	8.3
Glutamic acid	1 2.2	9.7	4.3
Glutamine	2.2	9.1	
Glycine	2.3	9.6	
Histidine	1.8	9.2	6.0
Isoleucine	2.4	9.7	
Leucine	2.4	9.6	
Lysine	2.2	9.0	10.5
Methionine	2.3	9.2	
Phenylalanin	e 1.8	9.1	
Proline	2.1	10.6	***************************************
Serine	2.2	9.2	
Threonine	2.6	10.4	***************************************
Tryptophan	2.4	9.4	***************************************
Tyrosine	2.2	9.1	10.1
Valine	2.3	9.6	***************************************

Biochemistry by Garret and Grisham, 5th ed.

pK_a Values of the Amino Acids

You should know the pKa values for these R groups and what they mean.

- Arginine, Arg, R: pK_a (guanidino group) = 12.5
- Aspartic Acid, Asp, D: pK_a (β -carboxyl) = 3.9
- Cysteine, Cys, C: pK_a (sulfhydryl) = 8.3
- Glutamic Acid, Glu, E: $pK_a(\gamma-carboxyl) = 4.3$
- Histidine, His, H: pK_a (imidazole) = 6.0
- Lysine, Lys, K: pKa (e-amino) = 10.5
- Tyrosine, Tyr, Y: pKa (phenolic OH) = 10.1

The Isoelectric Point

- The isoelectric point, pl, is the pH of an amino acid (or peptide) at which the molecules on average have no net charge.
- For simple amino acids such as alanine, the pl is an average of the pK_a's of the carboxyl (2.34) and ammonium (9.69) groups. Thus, the pl for alanine is calculated to be: (2.4 + 9.7)/2 = 6.05.
- If additional acidic or basic groups are present as side-chain functions, the pl is the average of the pK_a's of the two most similar acids.
- In the case of glutamic acid, the similar acids are the α-carboxyl group (pK_a = 2.2) and the side-chain carboxyl group (pK_a = 4.3), so pl = (2.2 + 4.3)/2 = 3.25.
- For arginine, the similar acids are the guanidinium species on the side-chain (pK_a = 12.5) and the α-NH₃⁺ function (pK_a = 9.0), so the calculated pI = (12.5 + 9.0)/2 = 10.75.

Given the value of pK_a of each functional group, we can calculate the ratio of each acid to its conjugate base as a function of pH using the Henderson-Hasselbalch equation.

pKa tells us how acidic (or not) a given hydrogen atom in a molecule is. **pH** tells us how acidic a solution is.

Henderson-Hasselbalch

Using the Henderson-Hasselbalch equation, we can calculate the percent of acidic or conjugate base form present and the net charge of serine at pH 1.0, 7.0, and 10.0 ($pka_1=2.21$, $pka_2=9.15$).

At physiological pH, the α -carboxyl group of a simple amino acid (with no ionizable side chains) is completely dissociated, whereas the α -amino group has not really begun its dissociation.

- Consider the ionization of an α -COOH

$$\alpha - CO_2 H + H_2 O = \frac{pK_a = 2.00}{\alpha - CO_2} + H_3 O^+$$

- substituting the value of pK_a (2.00) and pH at 7.0 gives
 7 = 2 + log[COO⁻]/[COOH]
 [COO⁻]/[COOH] = 1 x 10⁵
 - at pH 7.0, the α -carboxyl group is virtually 100% in the ionized or conjugate base form and has a charge of -1

$$pH = pK_a + log \frac{[conjugate base]}{[weak acid]}$$

- We can repeat this calculation at any pH and determine the ratio of [α -COO⁻] to [α -COOH] and the net charge on the α -carboxyl at that pH.
- We can also calculate the ratio of acid to conjugate base for an α -NH₃⁺ group; for this calculation, assume a value 10.0 for pK_a

$$\alpha - NH_3^+ + H_2O = \frac{pK_a = 10.00}{\alpha - NH_2} + H_3O^+$$

- $7 = 10 + \log [NH_2] / [NH_3^+]$
- $[NH_2] / [NH_3^+] = 0.001$
- at pH 7.0, the ratio of α -NH₃⁺ to α -NH₂ is approximately 1 to 1000
- at this pH, an α-amino group is 99.9% in the acid or protonated form and has a charge of +1

Stereochemistry of Amino Acids

- All but glycine are chiral.
- L-amino acids predominate in nature.
- D, L-nomenclature is based on D- and Lglyceraldehyde.
- Isoleucine and threonine have two chiral centers.

Stereochemistry of Amino Acids

19 amino acids are chiral molecules

Glycine is not a chiral molecule

Amino Acids

Amino acids contain a central tetrahedral carbon atom.

© 2012 W. H. Freeman and Company

Only L-isomers are found naturally.

Remember: L=life.

Spectroscopic Properties

- All amino acids absorb at infrared wavelengths.
- Tyr, and Trp absorb UV at 280 nm.
- Absorbance at 280 nm is a good diagnostic test for proteins. It can be used to estimate the concentration of a protein in solution (A=εlc), which is a nondestructive method for protein detection.
- The peptide bonds between amino acids absorb at 190 nm. Oxygen also absorb at this wavelength, so instead measurements can made at 205-210 nm.

Spectroscopic Properties

The UV spectra of the aromatic amino acids at pH 6. These strong absorptions can be used for spectroscopic determinations of protein concentration.

